Sains Malaysiana 53(3)(2024): 691-704

http://doi.org/10.17576/jsm-2024-5303-16

 

Investigation of Thermomechanical Analysis of Carbon/Epoxy Composite for Spacecraft Structure Material

(Penelitian Analisis Termomekanik Komposit Karbon/Epoksi untuk Bahan Struktur Kapal Angkasa)

 

MAHFUD IBADI1, HERRY PURNOMO1, DAVID NATANAEL VICARNELTOR1, HERI BUDI WIBOWO1, MUHAMAD HANANUPUTRA SETIANTO1 & YUDAN WHULANZA2,*

 

1Aeronautics and Spaces Research Organization, National Research and Innovation Agency (BRIN), West Java, Indonesia

2Department of Mechanical Engineering, Faculty of Engineering, Universitas Indonesia, West Java, Indonesia

 

Received: 7 July 2023/Accepted: 15 February 2024

 

Abstract

When building spacecraft structures, it is crucial to use lightweight and high-strength composite materials with the necessary characteristics. Aerospace applications benefit significantly from the exceptional properties of carbon/epoxy composite materials. As part of a study on composite materials, this work focuses on exploring the thermo-mechanical properties of carbon fiber. The matrix used in this research is LY-5052 epoxy, applied through a vacuum infusion technique. To achieve optimal composite properties, various tests are conducted to evaluate its thermo-mechanical behavior. These tests may include measuring Thermal Conductivity and performing thermogravimetric analysis (TGA). Most importantly, the composite is subjected to tensile testing at room temperature to 200 °C. This is done because most tensile tests on carbon/LY5052 composites are carried out at room temperature. The results obtained from the measurement of the thermal conductivity of the carbon/LY5052 composite were 0.419 W/mK; from the Thermogravimetric Analysis (TGA), the carbon/LY5052 composite began to decompose at a temperature of 365.63 °C and the tensile test was carried out simultaneously with variations in temperature from room temperature, 50 °C, 100 °C, 150 °C and 200 °C have tensile strengths of 553, 507, 340, 266, and 242 MPa, respectively. This trend confirms that strength decreases with higher temperature loads. Several image observations are also presented in this report to understand composite materials' failure behavior at these various temperatures.

 

Keywords: Carbon/epoxy composite; failure behavior; spacecraft structures; thermomechanical

 

Abstrak

Bahan komposit ringan dan berkekuatan tinggi adalah penting untuk struktur kapal angkasa yang memerlukan bahan dengan ciri yang dikehendaki. Bahan komposit karbon/epoksi mempamerkan sifat cemerlang untuk aplikasi ruang angkasa. Penelitian ini adalah sebahagian daripada kajian tentang sifat termo-mekanikal bahan komposit menggunakan gentian karbon, manakala matriks yang digunakan ialah epoksi LY-5052 yang dibuat melalui teknik infusi vakum. Untuk mendapatkan komposit terbaik dari segi sifat, tingkah laku termo-mekanikal dijalankan dengan melakukan beberapa ujian, antaranya pengukuran Kekonduksian Termal dan analisis termogravimetrik (TGA) dan yang paling penting ialah menjalankan ujian tegangan dengan variasi suhu daripada suhu bilik hingga 200 °C. Ini dilakukan kerana kebanyakan ujian tegangan pada komposit karbon/epoksi dijalankan pada keadaan suhu bilik. Keputusan yang diperoleh daripada pengukuran kekonduksian terma komposit karbon/epoksi ialah 0.419 W/mK daripada Analisis Termogravimetrik (TGA) komposit karbon/epoksi mula terurai pada suhu 365.63 °C dan ujian tegangan dijalankan, keluar serentak dengan variasi suhu daripada suhu bilik, 50 °C, 100 °C, 150 °C dan 200 °C masing-masing mempunyai kekuatan tegangan 553, 507, 340, 266 dan 242 MPa. Trend ini mengesahkan bahawa kekuatan berkurangan dengan beban suhu yang lebih tinggi. Beberapa pemerhatian imej juga dibentangkan dalam laporan ini untuk mendapatkan pemahaman tentang tingkah laku kegagalan bahan komposit pada pelbagai suhu ini.

 

Kata kunci: Komposit karbon/epoksi; struktur kapal angkasa; termomekanikal; tingkah laku kegagalan

 

REFERENCES

Abdurohman, K., Satrio, T., Muzayadah, N.L. & Teten. 2018. A comparison process between hand lay-up, vacuum infusion and vacuum bagging method toward e-Glass EW 185/lycal composites. Journal of Physics: Conference Series 1130: 012018. https://doi.org/10.1088/1742-6596/1130/1/012018

Bücheler, D., Kaiser, A. & Henning, F. 2016. Using thermogravimetric analysis to determine carbon fiber weight percentage of fiber-reinforced plastics. Composites Part B: Engineering 106: 218-223. https://doi.org/10.1016/j.compositesb.2016.09.028

Cao, S., Wu, Z. & Wang, X. 2009. Tensile properties of CFRP and hybrid FRP composites at elevated temperatures. Journal of Composite Materials 43(4): 315-330. https://doi.org/10.1177/0021998308099224

de Souza, L.G.M., da Silva, E.J. & de Souza, L.G.V.M. 2020. Obtaining and characterizing a polyester resin and cement powder composites. Materials Research 23(5): e20180894. https://doi.org/10.1590/1980-5373-mr-2018-0894

Garrett, J.D. 2016. Experimentation of Mode I & Mode II fracture of uni-directional composites and finite element analysis of Mode I fracture using cohesive contact. MSc. in Mechanical Engineering. California Polytechnic State University Publishing (Unpublished). https://doi.org/DOI: https://doi.org/10.15368/theses.2016.142

Gradiniar Rizkyta, A. & Ardhyananta, H. 2013. Pengaruh penambahan karbon terhadap sifat mekanik dan konduktivitas listrik komposit karbon/epoksi sebagai pelat bipolar polimer elektrolit membran sel bahan bakar (polymer exchange membrane (PEMFC). Jurnal Teknik ITS 2(1): F36-F40.

Hawileh, R.A., Abu-Obeidah, A., Abdalla, J.A. & Al-Tamimi, A. 2015. Temperature effect on the mechanical properties of carbon, glass and carbon–glass FRP laminates. Construction and Building Materials 75: 342-348. https://doi.org/10.1016/j.conbuildmat.2014.11.020

Huntsman. 2012. Araldite® LY 5052/Aradur® 5052 Cold Curing Epoxy Systems Technical Data Sheet. Huntsman.

Irawan, A.P., Soemardi, T.P., Widjajalaksmi, K. & Reksoprodjo, A.H. 2011. Tensile and flexural strength of ramie fiber reinforced epoxy composites for socket prosthesis application. International Journal of Mechanical and Materials Engineering 6(1): 46-50.

Jeyranpour, F., Alahyarizadeh, Gh. & Minuchehr, A. 2016. The thermo-mechanical properties estimation of fullerene-reinforced resin epoxy composites by molecular dynamics simulation - A comparative study. Polymer 88: 9-18. https://doi.org/10.1016/j.polymer.2016.02.018

Johnson, A.C., Hayes, S.A. & Jones, F.R. 2012. The role of matrix cracks and fibre/matrix debonding on the stress transfer between fibre and matrix in a single fibre fragmentation test. Composites Part A: Applied Science and Manufacturing 43(1): 65-72. https://doi.org/10.1016/j.compositesa.2011.09.005

Khan, Z.I., Arsad, A., Mohamad, Z., Habib, U. & Ahmad Zaini, M.A. 2021. Comparative study on the enhancement of thermo-mechanical properties of carbon fiber and glass fiber reinforced epoxy composites. Materials Today: Proceedings 39: 956-958. https://doi.org/10.1016/j.matpr.2020.04.223

Li, X., Wu, L., Ma, L. & Yan, X. 2016. Effect of temperature on the compressive behavior of carbon fiber composite pyramidal truss cores sandwich panels with reinforced frames. Theoretical and Applied Mechanics Letters 6(2): 76-80. https://doi.org/10.1016/j.taml.2016.02.002

McKinnon, M.B., Ding, Y., Stoliarov, S.I., Crowley, S. & Lyon, R.E. 2017. Pyrolysis model for a carbon fiber/epoxy structural aerospace composite. Journal of Fire Sciences 35(1): 36-61. https://doi.org/10.1177/0734904116679422

Mahfud, I., Whulanza, Y., Purnomo, H., Vicarneltor, D.N., Soemardi, T.P. & Prayogo, G. 2022. Experimental and numerical characterization of mechanical properties for carbon fiber reinforced epoxy LY5052 composite for prosthesis structures. Jurnal Teknik Mesin 15(1): 1-6.

Raof, N.A., Yunus, R., Rashid, U., Azis, N. & Yaakub, Z. 2019. Effect of molecular structure on oxidative degradation of ester based transformer oil. Tribology International 140: 105852. https://doi.org/10.1016/j.triboint.2019.105852

Shaherya, A., Khan, S., Qaiser, H., Khurram, A.A. & Subhani, T. 2017. Mechanical and thermal properties of hybrid carbon fibre–phenolic matrix composites containing graphene nanoplatelets and graphite powder. Plastics, Rubber and Composites 46(10): 431-441. https://doi.org/10.1080/14658011.2017.1385177

Sun, G., Zuo, W., Chen, D., Luo, Q., Pang, T. & Li, Q. 2021. "On the effects of temperature on tensile behavior of carbon fiber reinforced epoxy laminates." Thin-Walled Structures 164: 107769.https:// doi.org/10.1016/j.tws.2021.107769

Thamizh Selvan, R., Vishakh Raja, Pc., Mangal, P., Mohan, N. & Bhowmik, S. 2021. Recycling technology of epoxy glass fiber and epoxy carbon fiber composites used in aerospace vehicles. Journal of Composite Materials 55(23): 3281-3292. https://doi.org/10.1177/00219983211011532

Tilak, S.R., Shuib Pasha, S.A., Nayeem Ahmed, M. & Daniel, S. 2021. An experimental investigation of flexural and inter laminar shear stress on hybrid polymer based composites (E glass fibre - kevlar fibre with epoxy resin 5052) for different thickness. Materials Today: Proceedings 46: 8991-8994. https://doi.org/10.1016/j.matpr.2021.05.375

VenkateshwarReddy, C., Roopa, K., RameshBabu, P. & RamNarayanan, R. 2020. Matrix modification of carbon fiber reinforced composites with hybrid resin system. IOP Conference Series: Materials Science and Engineering 998(1): 012005. https://doi.org/10.1088/1757-899X/998/1/012005

Yao, T., Zhang, C., Chen, K., Niu, T., Wang, J. & Yang, Y. 2023. Hydroxyl-group decreased dielectric loss coupled with 3D-BN network enhanced high thermal conductivity epoxy composite for high voltage-high frequency conditions. Composites Science and Technology 234: 109934.

Yasaka, T. & Onoda, J. 2003. Spacecraft structures. In Encyclopedia of Physical Science and Technology. 3rd ed., edited by Meyers, R.A. New York: Academic Press. pp. 449-461. https://doi.org/10.1016/B0-12-227410-5/00899-1

Zárate, C.N., Aranguren, M.I. & Reboredo, M.M. 2008. Thermal degradation of a phenolic resin, vegetable fibers, and derived composites. Journal of Applied Polymer Science 107(5): 2977-2985. https://doi.org/10.1002/app.27455

 

*Corresponding author; email: yudan.whulanza@ui.ac.id

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous