Sains Malaysiana 53(3)(2024): 691-704
http://doi.org/10.17576/jsm-2024-5303-16
Investigation of Thermomechanical Analysis of Carbon/Epoxy
Composite for Spacecraft Structure Material
(Penelitian Analisis Termomekanik Komposit Karbon/Epoksi untuk Bahan Struktur Kapal Angkasa)
MAHFUD IBADI1,
HERRY PURNOMO1, DAVID NATANAEL VICARNELTOR1, HERI BUDI
WIBOWO1, MUHAMAD HANANUPUTRA SETIANTO1 & YUDAN
WHULANZA2,*
1Aeronautics and Spaces Research Organization,
National Research and Innovation Agency (BRIN), West Java, Indonesia
2Department of Mechanical Engineering, Faculty of
Engineering, Universitas Indonesia, West Java,
Indonesia
Received: 7 July 2023/Accepted: 15 February 2024
Abstract
When building spacecraft
structures, it is crucial to use lightweight and high-strength composite
materials with the necessary characteristics. Aerospace applications benefit
significantly from the exceptional properties of carbon/epoxy composite materials.
As part of a study on composite materials, this work focuses on exploring the
thermo-mechanical properties of carbon fiber. The
matrix used in this research is LY-5052 epoxy, applied through a vacuum
infusion technique. To achieve optimal composite properties, various tests are
conducted to evaluate its thermo-mechanical behavior.
These tests may include measuring Thermal Conductivity and performing thermogravimetric analysis (TGA). Most importantly, the
composite is subjected to tensile testing at room temperature to 200 °C. This
is done because most tensile tests on carbon/LY5052 composites are carried out
at room temperature. The results obtained from the measurement of the thermal
conductivity of the carbon/LY5052 composite were 0.419 W/mK;
from the Thermogravimetric Analysis (TGA), the
carbon/LY5052 composite began to decompose at a temperature of 365.63 °C and
the tensile test was carried out simultaneously with variations in temperature
from room temperature, 50 °C, 100 °C, 150 °C and 200 °C have tensile strengths
of 553, 507, 340, 266, and 242 MPa, respectively. This trend confirms that
strength decreases with higher temperature loads. Several image observations
are also presented in this report to understand composite materials' failure behavior at these various temperatures.
Keywords: Carbon/epoxy
composite; failure behavior; spacecraft structures;
thermomechanical
Abstrak
Bahan komposit ringan dan berkekuatan tinggi adalah penting untuk struktur kapal angkasa yang memerlukan bahan dengan ciri yang dikehendaki. Bahan komposit karbon/epoksi mempamerkan sifat cemerlang untuk aplikasi ruang angkasa. Penelitian ini adalah sebahagian daripada kajian tentang sifat termo-mekanikal bahan komposit menggunakan gentian karbon, manakala matriks yang digunakan ialah epoksi LY-5052 yang dibuat melalui teknik infusi vakum. Untuk mendapatkan komposit terbaik dari segi sifat, tingkah laku termo-mekanikal dijalankan dengan melakukan beberapa ujian, antaranya pengukuran Kekonduksian Termal dan analisis termogravimetrik (TGA) dan yang paling penting ialah menjalankan ujian tegangan dengan variasi suhu daripada suhu bilik hingga 200 °C. Ini dilakukan kerana kebanyakan ujian tegangan pada komposit karbon/epoksi dijalankan pada keadaan suhu bilik. Keputusan yang diperoleh daripada pengukuran kekonduksian terma komposit karbon/epoksi ialah 0.419 W/mK daripada Analisis Termogravimetrik (TGA) komposit karbon/epoksi mula terurai pada suhu 365.63 °C dan ujian tegangan dijalankan, keluar serentak dengan variasi suhu daripada suhu bilik, 50 °C, 100 °C,
150 °C dan 200 °C masing-masing mempunyai kekuatan tegangan 553, 507, 340, 266 dan 242 MPa. Trend ini mengesahkan bahawa kekuatan berkurangan dengan beban suhu yang lebih tinggi. Beberapa pemerhatian imej juga dibentangkan dalam laporan ini untuk mendapatkan pemahaman tentang tingkah laku kegagalan bahan komposit pada pelbagai suhu ini.
Kata kunci: Komposit karbon/epoksi; struktur kapal angkasa; termomekanikal; tingkah laku kegagalan
REFERENCES
Abdurohman, K., Satrio, T., Muzayadah, N.L. & Teten. 2018. A
comparison process between hand lay-up, vacuum infusion and vacuum bagging
method toward e-Glass EW 185/lycal composites. Journal of Physics: Conference Series 1130: 012018.
https://doi.org/10.1088/1742-6596/1130/1/012018
Bücheler, D., Kaiser, A. &
Henning, F. 2016. Using thermogravimetric analysis to determine carbon fiber weight percentage of fiber-reinforced
plastics. Composites Part B: Engineering 106: 218-223.
https://doi.org/10.1016/j.compositesb.2016.09.028
Cao, S., Wu, Z. &
Wang, X. 2009. Tensile properties of
CFRP and hybrid FRP composites at elevated temperatures. Journal of
Composite Materials 43(4): 315-330.
https://doi.org/10.1177/0021998308099224
de Souza, L.G.M., da
Silva, E.J. & de Souza, L.G.V.M. 2020. Obtaining and characterizing a polyester resin and cement powder
composites. Materials Research 23(5): e20180894.
https://doi.org/10.1590/1980-5373-mr-2018-0894
Garrett, J.D. 2016. Experimentation of Mode I & Mode II
fracture of uni-directional composites and finite
element analysis of Mode I fracture using cohesive contact. MSc. in
Mechanical Engineering. California Polytechnic State University Publishing
(Unpublished). https://doi.org/DOI: https://doi.org/10.15368/theses.2016.142
Gradiniar Rizkyta,
A. & Ardhyananta, H. 2013. Pengaruh penambahan karbon terhadap sifat mekanik dan konduktivitas listrik komposit karbon/epoksi sebagai pelat bipolar polimer elektrolit membran sel bahan bakar (polymer exchange membrane (PEMFC). Jurnal Teknik ITS 2(1): F36-F40.
Hawileh, R.A., Abu-Obeidah, A., Abdalla, J.A. &
Al-Tamimi, A. 2015. Temperature effect on the mechanical properties of carbon, glass and
carbon–glass FRP laminates. Construction and Building Materials 75: 342-348. https://doi.org/10.1016/j.conbuildmat.2014.11.020
Huntsman. 2012. Araldite® LY 5052/Aradur®
5052 Cold Curing Epoxy Systems Technical Data Sheet. Huntsman.
Irawan, A.P., Soemardi, T.P., Widjajalaksmi, K.
& Reksoprodjo, A.H. 2011. Tensile and flexural strength of ramie fiber reinforced epoxy composites for socket prosthesis application. International
Journal of Mechanical and Materials Engineering 6(1): 46-50.
Jeyranpour, F., Alahyarizadeh, Gh. & Minuchehr, A. 2016. The
thermo-mechanical properties estimation of fullerene-reinforced resin epoxy
composites by molecular dynamics simulation - A comparative study. Polymer 88: 9-18. https://doi.org/10.1016/j.polymer.2016.02.018
Johnson, A.C., Hayes,
S.A. & Jones, F.R. 2012. The role
of matrix cracks and fibre/matrix debonding on the
stress transfer between fibre and matrix in a single fibre fragmentation test. Composites Part A: Applied Science and Manufacturing 43(1): 65-72.
https://doi.org/10.1016/j.compositesa.2011.09.005
Khan, Z.I., Arsad, A., Mohamad, Z., Habib, U. & Ahmad Zaini, M.A. 2021. Comparative
study on the enhancement of thermo-mechanical properties of carbon fiber and glass fiber reinforced
epoxy composites. Materials Today: Proceedings 39: 956-958.
https://doi.org/10.1016/j.matpr.2020.04.223
Li, X., Wu, L., Ma, L.
& Yan, X. 2016. Effect of
temperature on the compressive behavior of carbon fiber composite pyramidal truss cores sandwich panels with
reinforced frames. Theoretical and Applied Mechanics Letters 6(2):
76-80. https://doi.org/10.1016/j.taml.2016.02.002
McKinnon, M.B., Ding,
Y., Stoliarov, S.I., Crowley, S. & Lyon, R.E.
2017. Pyrolysis model for a carbon fiber/epoxy structural aerospace composite. Journal
of Fire Sciences 35(1): 36-61. https://doi.org/10.1177/0734904116679422
Mahfud, I., Whulanza, Y., Purnomo, H., Vicarneltor, D.N., Soemardi, T.P.
& Prayogo, G. 2022. Experimental and numerical characterization of mechanical properties
for carbon fiber reinforced epoxy LY5052 composite
for prosthesis structures. Jurnal Teknik Mesin 15(1): 1-6.
Raof, N.A., Yunus, R., Rashid, U., Azis, N.
& Yaakub, Z. 2019. Effect of molecular structure on oxidative degradation of ester based
transformer oil. Tribology International 140: 105852.
https://doi.org/10.1016/j.triboint.2019.105852
Shaherya, A., Khan, S., Qaiser, H., Khurram, A.A. & Subhani, T. 2017. Mechanical
and thermal properties of hybrid carbon fibre–phenolic matrix composites
containing graphene nanoplatelets and graphite
powder. Plastics, Rubber and Composites 46(10): 431-441.
https://doi.org/10.1080/14658011.2017.1385177
Sun, G., Zuo, W., Chen, D., Luo, Q., Pang, T. & Li, Q. 2021. "On the effects of temperature on tensile behavior of carbon fiber reinforced epoxy laminates." Thin-Walled Structures 164: 107769.https:// doi.org/10.1016/j.tws.2021.107769
Thamizh Selvan,
R., Vishakh Raja, Pc., Mangal,
P., Mohan, N. & Bhowmik, S. 2021. Recycling technology of epoxy glass fiber and epoxy carbon fiber composites used in aerospace vehicles. Journal of Composite Materials 55(23): 3281-3292. https://doi.org/10.1177/00219983211011532
Tilak, S.R., Shuib Pasha, S.A., Nayeem Ahmed,
M. & Daniel, S. 2021. An
experimental investigation of flexural and inter laminar shear stress on hybrid
polymer based composites (E glass fibre - kevlar fibre with epoxy resin 5052) for different thickness. Materials
Today: Proceedings 46: 8991-8994.
https://doi.org/10.1016/j.matpr.2021.05.375
VenkateshwarReddy,
C., Roopa, K., RameshBabu,
P. & RamNarayanan, R. 2020. Matrix modification of carbon fiber reinforced composites with hybrid resin system. IOP Conference Series: Materials Science and Engineering 998(1): 012005.
https://doi.org/10.1088/1757-899X/998/1/012005
Yao, T., Zhang, C.,
Chen, K., Niu, T., Wang, J. & Yang, Y. 2023. Hydroxyl-group decreased dielectric loss
coupled with 3D-BN network enhanced high thermal conductivity epoxy composite
for high voltage-high frequency conditions. Composites Science and
Technology 234: 109934.
Yasaka, T. & Onoda, J.
2003. Spacecraft structures. In Encyclopedia of Physical Science and Technology. 3rd ed., edited by Meyers, R.A. New
York: Academic Press. pp. 449-461.
https://doi.org/10.1016/B0-12-227410-5/00899-1
Zárate, C.N., Aranguren, M.I. & Reboredo,
M.M. 2008. Thermal degradation of a
phenolic resin, vegetable fibers, and derived
composites. Journal of Applied Polymer Science 107(5): 2977-2985.
https://doi.org/10.1002/app.27455
*Corresponding author; email: yudan.whulanza@ui.ac.id
|